
G. Babin, P. Kropf, and M. Weiss (Eds.): MCETECH 2009, LNBIP 26, pp. 306–318, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Integration Testing of Web Applications and Databases
Using TTCN-3

Bernard Stepien and Liam Peyton

School of Information Technology and Engineering,
University of Ottawa, Canada

{bernard,lpeyton}@site.uottawa.ca

Abstract. Traditional approaches to integration testing typically use a variety of
different test tools (such as HTTPUnit, Junit, DBUnit) and manage data in a va-
riety of formats (HTML, Java, SQL) in order to verify web application state at
different points in the architecture of a web application. Managing test cam-
paigns across these different tools and correlating intermediate results in differ-
ent formats is a difficult problem which we address in this paper. In particular,
the major contribution of this paper is to demonstrate that a specification-based
approach to integration testing enables one to define integration test campaigns
more succinctly and efficiently in a single language/tool and correlate interme-
diate results in a single data format. We also evaluate the effectiveness of
TTCN-3 (a standards-based test specification language and framework) in sup-
porting such an approach.

Keywords: web applications, integration testing, databases, TTCN-3.

1 Introduction

Complex web applications in a service-oriented architecture may have to integrate
data from several data sources and may have to maintain state in a distributed fashion
across many components of the web application. One of the aims of integration test-
ing is to verify intermediate results at key interaction points within the architecture of
the web application. This can be done by testing the web application state as captured
either in persistent data stored in a data source, or as session data maintained in mem-
ory by the web application or any of its distributed components. This can be a com-
plex and challenging task even under the most ideal circumstances.

Traditional approaches to integration testing would typically use a variety of dif-
ferent test tools (such as HTTPUnit, Junit, DBUnit) and manage data in a variety of
formats (HTML, Java, SQL) in order to verify web application state at different points
in the architecture of a web application. Managing test campaigns across these differ-
ent tools and correlating intermediate results in different formats is a difficult problem
which we address in this paper. In particular, the major contribution of this paper is to
demonstrate that a specification-based approach to integration testing enables one to
define integration test campaigns more succinctly and efficiently in a single lan-
guage/tool and correlate intermediate results in a single data format. We also evaluate

 Integration Testing of Web Applications and Databases Using TTCN-3 307

the effectiveness of TTCN-3 (a standards-based test specification language and
framework [1]) in supporting such an approach.

Using the TTCN-3 specification language, we define an abstract data layer which
can maintain web application state across a variety of test tools and formats and verify
intermediate results based on tests which transform that abstract data layer. The ap-
proach is implemented in a TTCN-3 test framework which uses a collection of test
adaptors to mediate between the abstract test layer in which test specifications are
defined and the concrete test layer which interacts directly with the web application
and its components. Specific examples based on an Online Book Store and sample
TTCN-3 specifications are used to verify and correlate database behavior and web
application component behavior as they relate to web application state.

TTCN-3 is a test specification and test implementation language for testing distrib-
uted systems developed by the European Telecommunications Standards Institute
(ETSI). It provides powerful abstraction mechanisms for interfacing to different data
and presentation formats and for defining test cases at different levels of abstraction,
much as developers use modeling languages to specify the design of a system at dif-
ferent levels of abstraction. This enables reuse across different levels of test activities
[2] and the coordination and synchronization of test activities with development ac-
tivities throughout the development life cycle.

The need for a systematic test framework reflective of web application architecture
rather than a patchwork of tools and test scripts has been pointed out as well in other
work [3] outside of the TTCN-3 community. Other approaches to integration testing
have focused on ensuring formal conformance to web service protocols in web appli-
cations that leverage web services as components [4]. TTCN-3 has also been used in
this manner [5].

An alternative approach taken to address the low level of detail at which current
tools operate is to do model-based testing where test scripts are generated from mod-
els. This was done in the AGEDIS case studies [6] where HTTPUnit and HTMLUnit
scripts were generated from UML models. In [7] User Requirements Notation (URN),
an ITU standard for requirements modeling in telecommunications was used to test
web applications. And in [8] evaluations done with JML-JUnit used JUnit scripts
generated from JML models of Java classes. Such approaches do link test script gen-
eration to an abstract view of the system being tested, but they do not give the same
power and flexibility as a test specification approach to verify application logic and
information management independent of volatile implementation and presentation
details.

2 Book Store Web Application Example

Figure 1 gives a simple example of a typical J2EE web application that supports an on-
line book store. We will use this example, throughout the paper to illustrate our ap-
proach. The browser interface contains a rich set of HTML, XML, JavaScript, images,
stylesheets, etc, that it receives from the web application in response to HTTP requests.
The web application, in return, interacts with a variety of components within a service-
oriented architecture. It interacts with the book order database via JDBC to keep track
of available books and purchases. It interacts with a shopping cart enterprise java bean

308 B. Stepien and L. Peyton

via RMI while the customer is shopping online and it interacts with an order processing
service via SOAP to let the warehouse know when there is an order of books to ship.

There is also a test framework (implemented in TTCN-3) which can communicate
directly via concrete test adaptors with either the web application or any of the com-
ponents used by the web application. It performs integration testing that verifies
intermediate results in terms of application web state based on abstract test specifica-
tions which define an abstract data layer in terms of data types, and uses templates for
expected responses.

Fig. 1. Book Store and Test Agent

For the purposes of explaining the specification-based approach to integration test-
ing, we will focus on first verifying intermediate results in the Book Order DB, and
then we will focus on how to correlate and integrate those results into verification of
intermediate results within the web application itself.

3 Database Integration Testing

Specifying test suites for testing database integration mostly consists of specifying
test oracles for results of queries or test oracles to verify the state of a database after
some update operation. In both cases, testing consists in performing a query and veri-
fying the result set. The central TTCN-3 concept to represent test oracles is the tem-
plate. In sharp contrast with traditional testing methodologies, a TTCN-3 template
performs the checking of all the data involved in a result set in a single operation. The
setting of an oracle is organized in three steps:

• The definition of a data type to represent the results set
• The definition of a template of values for each element of the data type to be

matched.
• The definition of a test events sequence with possible alternative paths.

 Integration Testing of Web Applications and Databases Using TTCN-3 309

In contrast to unit testing approaches, TTCN-3 is more behavior oriented. This in-
cludes being able to correlate the results of several consecutive events where the cur-
rent state of the database is dependent on all previous steps.

3.1 Data Typing

Abstract data types to represent database results are defined in terms of results sets as
sets of rows where each row is an individual database record and columns correspond
to fields. Union in TTCN-3 can be used to define results that join elements from dif-
ferent tables. For example, below we define a BooksTable, PublisherTable and the
join between them to create a CatalogEntry result set.

type record DBBooksTableType {
 charstring author,
 charstring title,
 float price
}

type record DBPublisherTableType {
 charstring pubName,
 charstring street,
 charstring city
}

type record BooksPublisherResultType {
 charstring pubName,
 charstring author,
 charstring title
}

The three above basic types are merged into a TTCN-3 union type as follows:

type union CatalogEntry {
 DBBooksTableType booksTable,
 DBPublisherTableType publisherTable,
 BooksPublisherResultType bookspubResult
}

Finally, rows are represented using the TTCN-3 set of type construct on the previ-
ously defined union.

type set of CatalogEntry CatalogEntryResultSet;

3.2 Specifying Test Oracles Using TTCN-3 Templates

The TTCN-3 template is more than an instance of test data for a given data type. It
looks like a plain assignment of values but is in fact capable of complex matching.
Values can instead be list of alternate values, ranges for numeric values or pattern
matching specifications for strings. Thus, a TTCN-3 template is more like a hybrid
between a data assignment and some potentially complex logical expression. Since it
can be parametric it actually serves the role of a function. The most important concept
however remains that the actual matching mechanism is built-in and thus needs zero
coding effort from the tester. An atomic element of a test oracle can be represented by

310 B. Stepien and L. Peyton

the following template where the field booksTable indicates the type among the types
of the union used and the assigned values indicate the orcale’s criteria.

template CatalogEntry amerique := {
 booksTable := {
 author := "Herge",
 title := "Tintin en Amerique",
 price := 8.20
 }
}

The template is also a powerful structuring concept since it can be re-used by other
templates. For example, a list of database items defined individually as above can be
re-used to define a list of items, thus different database rows, as follows:

template CatalogEntryResultSet myBooks := { templeSoleil, ileNoire,

amerique };

Zoio recommends to externalize assertions [9] by avoiding the scattering of hard
coded assertions throughout the test code and also to write comprehensive tests that
cover all aspects of a database state and finally use precise assertions. The TTCN-3
template concept naturally implements all of these recommendations.

3.3 Performing a Test

In TTCN-3, a database test is specified by sending an SQL request over a communi-
cation channel that is abstracted as a TTCN-3 port and by receiving a response over
that same channel. The receive statement actually serves two purposes: to obtain data
from the communication channel and to match this obtained data with a template. In
the following example, after sending an SQL request, we attempt to match the result
set to the template myBooks that we defined previously.

db_port.send(“select * from books”);
alt {
 [] db_port.receive(myBooks) {setverdict(pass)}
 [] db_port.receive {setverdict(fail)}
}

The above code illustrates how test verdicts are set by using the TTCN-3 alt con-
struct. The first case corresponds to the expected response being received and the test
verdict being set to pass. The second alternative case consists in receiving anything
else which would result in setting the test verdict to fail instead. The TTCN-3 alt
construct is a powerful concept that enables one to specify complex test behaviors
through nesting as trees that represent various possible sequences of test events with
their corresponding test verdicts in the leafs of the tree.

3.4 Separation of Concerns Between Abstract and Concrete Layer

So far we have only defined a high level abstract test specification without specifying
how the data is actually obtained. This is intentional because one of the central prem-
ises of TTCN-3 is that there should be an explicit separation of concerns between the

 Integration Testing of Web Applications and Databases Using TTCN-3 311

abstract and concrete layers. The abstract test specification is defined solely at the
abstract layer. The concrete layer (also called the test adapter layer) is where the ac-
tual connection with a database occurs and where the data is retrieved from results set
specified in a general purpose language (GPL). However, the actual classes and
member functions for the test adapter are fully defined in the TTCN-3 standard, part 5
[10]. There is a correspondence between the abstract layer send command and the test
adapter’s triSend method. This is where the typical JDBC [11] database interface
would take place and, at this point, nothing is unusual compared to the traditional
GPL test implementation, as can be observed in the following example of the imple-
mentation of the triSend method.

public TriStatus triSend(final TriComponentId componentId,
 final TriPortId tsiPortId, final TriAddress address,
 final TriMessage sendMessage) {

 byte [] mesg = sendMessage.getEncodedMessage();
 if(tsiPortId.getPortName().equals("system_dbPort")) {
 String theSQLRequest = new String(mesg);
 Connection db_connection = null;

 try {
 Class.forName ("com.mysql.jdbc.Driver").newInstance ();
 } catch …

 try {
 String url = "jdbc:mysql://localhost/ebookstore";
 db_connection = DriverManager.getConnection (url, null, null);
 } catch (SQLException e) { … }

 try {
 Statement db_statement = db_connection.createStatement();
 boolean status = db_statement.execute(theSQLRequest);
 } catch …

 ResultSet theCurrentResultsSet = db_statement.getResultSet();
} }

The results of the statement’s execution would then be retrieved and transformed into
abstract data by a codec (coder/decoder). The codec is part of the concrete (or test
adapter layer). For that purpose, the result set object instance is serialized so that it
can be passed as a byte[] stream to the codec.

byte[] theByteRepresentation = ((DBCodec)
 getCodec("")).serializeObject(theCurrentResultsSet);

The codec can be written in different ways. Normally, there is a corresponding codec
for each abstract data type. For JDBC, we have found a more generic approach for a
codec that can handle any abstract data type without having to know what data types
are used in a test suite. Thus, this codec is a perfect framework that can be used in any
database testing application. Its full description can be found in [12]. The separation
of concerns of TTCN-3 has some additional benefits of re-usability of the abstract
layer across platforms and implementation languages.

312 B. Stepien and L. Peyton

4 Integration Testing of Web and Database Applications

So far, we have shown examples of test specifications that, despite their abstractedness,
are not too different from unit testing since they involve only the database. The need to
test databases in conjunction with the web application that uses them has been pointed
out in [13]. They report on a tool called AGENDA that produces test paths using a
cyclomatic complexity algorithm. It is based on a white box approach and addresses
three concerns: better coverage, more appropriate input values for forms and better
targeting of test efforts. However, they use plain XML files to assemble their test
specification which unfortunately adds some unnecessary complexity to the problem.

The real value of using TTCN-3 is beyond mimicking unit testing and instead is
found in the specification of complex systems that consist of various components that
perform different services, some being database services and others being web ser-
vices or user interface services such as presenting web pages. Combining such com-
posite services into a single integration test can be challenging when using a GPL.
This is mostly due to the frequent tendency to mix test assertions and data extraction
functionalities. The separation of concerns that TTCN-3 supports enables us to spec-
ify test suites strictly at the abstract level and thus enable the tester to focus on the
purpose of the test.

A frequent class of applications consists in the combination of web applications
with databases. Here, two kinds of tests can be performed:

• Check the database state after a web user submitted data through a web ap-
plication.

• Check the results after a user did a query to the database over a web applica-
tion to see if they correspond to the state of a database.

4.1 Consistency Check Between Web Data Entries and Database State

Web data entry is achieved by submitting web forms that have been filled with data.
Thus, in order to specify the test to check the consistency between the web data en-
tries and the resulting database state, we need to handle both aspects of the integration
test and first how to submit a form in an abstract way and eventually how to translate
this abstract request into a concrete web query. A complete description of various
approaches to achieve the above has been presented elsewhere [14]. Here we will
briefly show the essential abstract layer elements required to specify an HTML form
so as to be able to illustrate the concept of test oracle transformation later.

type record ParameterValuesType {
 charstring parmName,
 charstring parmValue
}

type set of ParameterValuesType ParameterValuesSetType;

type record FormSubmitType {
 charstring formName,
 charstring buttonName,
 charstring actionValue,
 ParameterValuesSetType parameterValues
}

 Integration Testing of Web Applications and Databases Using TTCN-3 313

Using the above abstract data type, we can specify TTCN-3 templates for web form
submissions. First a definition of a filled web form for entering a specific book:

template ParameterValuesSetType filledFormAmerique := {
 {parmName := "author", parmValue := "Herge"},
 {parmName := "title", parmValue := "Tintin en Amerique"},
 {parmName := "price", parmValue := "8.00"}
}

Then we specify a parametric template to describe the form itself using a formal pa-
rameter to indicate the actual form parameters values for a specific book. This tem-
plate can be re-used to submit an arbitrary number of different books.

template FormSubmitType webInsertionFormSubmit
(ParameterValuesSetType theParameters) := {

 formName := "bookAdditionForm",
 buttonName := "add",
 actionValue :=

"http://localhost:8080/eBookStore/servlet/book_insertion",
 parameterValues := theParameters
}

Finally, we specify the typical test behavior statement that executes this form submis-
sion, namely a send command with the parametric template fully instantiated with the
previously defined template about the elements of the book being inserted in the data-
base and finally a receive statement that attempts matching the web response to yet
another template defining the expected web response.

web_port.send(webInsertionFormSubmit(filledFormAmerique));
web_port.receive(webResponsePage);

The test adapter layer’s codec then produces the appropriate web request as follows:

http://localhost:8080/eBookStore/servlet/book_insertion?author=Herge&tit
le=Tintin%20en%20Amerique&price=8.00

This web request would then be submitted on a TCP/IP channel using a post com-
mand. This example also illustrates how the TTCN-3 template achieves another sepa-
ration of concern between test behavior and conditions governing behavior.

At this point we have submitted the filled form and all we need to do is to perform
a test on the database to see if the data has been stored using the test described in
section 2. However, this would be a kind of double hard coded test oracle approach.
We certainly cannot avoid hard-coding the form submission since we need some
starting point; we could, however, avoid hard-coding the test oracle for the database
results by merely transforming the form submission template into a database result set
template to check the state of the database. This is possible in TTCN-3 because of its
ability to specify dynamic templates that are constructed from other tests results. The
most important fact is that TTCN-3 can do such a transformation without having the

314 B. Stepien and L. Peyton

data encoding or extraction required in a GPL. Thus, this transformation can be
achieved relatively concisely at the abstract level as in the following example:

function transformForms2DB(FormsParametersValuesSetType theFormParms)
return CatalogEntryResultSet {
 …
 for(i:=0; i < numOfForms; i:=i+1) {
 anItem.booksTable.author :=
 getFieldValue("author",theFormParms[i]);
 anItem.booksTable.title :=

getFieldValue("title", theFormParms[i]);
 anItem.booksTable.price :=

str2float(getFieldValue("price", theFormParms[i]));
 theItems[i] := anItem;
 }
 return theItems;
}

Thus, a complete integration test can now be specified as follows:

testcase web2DatabaseResultsTest() runs on MTCType system SystemType {
 var DBSelectResponseType theDBSelectResponse;

 map(mtc:dbPort, system:system_dbPort);
 map(mtc:webPort, system:system_webPort);

 // database re-initialization
 dbPort.send("delete from books");

 // have a user insert a book through a web page form
 webPort.send(webInsertionFormSubmit(filledFormAmerique));
 …
 // transform the list of filled forms information into
 // a database query results template
 var CatalogEntryResultSet expectedDatabaseResults :=
 transformForms2DB({filledFormOrNoir, filledFormAmerique});

 // check if the database contains the entered books
 dbPort.send(myBooksSelectRequest);
 alt {
 [] dbPort.receive(myBooksSelectResponse(expectedDatabaseResults))

{
 setverdict(pass)
 }
 [] dbPort.receive {
 setverdict(inconc);
} } }

4.2 Consistency Check Between Database State and Web Queries

Given a specific state of the database, we define a test that consists in simulating a
user performing a query through a web page and obtaining data that is displayed on
the response page. The second step of the test consists in performing a direct SQL
database query to obtain the same data as through the web page and compare it to the
data obtained through the web page. If the two sources of data coincide, the test has
passed.

 Integration Testing of Web Applications and Databases Using TTCN-3 315

The second step of this test is identical to the second step of the previous test (web
data insertion against database query). We can re-use the same SQL statement for that
purpose. These SQL statements can be extracted from the application under test as
suggested in [15]. They propose a testing approach that transforms the embedded
SQL statements in database applications to procedures in a general-purpose pro-
gramming language (GPL). Here we replace the GPL with TTCN-3 and gain clarity
and conciseness. The first step however is somewhat similar since we need to submit
a form with some pre-filled fields, this time with the parameters of the query and with
the different requested actions as follows:

template FormSubmitType queryBooksHerge := {
 formName := "queryForm",
 buttonName := "query",
 actionValue :=
 "http://localhost:8080/eBookStore/servlet/book_selection",
 parameterValues := {
 {parmName := "author", parmValue := "Herge"},
 {parmName := "maxPrice", parmValue := "10.0"}
 }
}

Again, this web query is submitted to the web application using a TTCN-3 send
command as follows:

webPort.send(queryBooksHerge);

This web query will result in a web response page that we need to specify using
TTCN-3 abstract data types and templates. A full description on how to achieve this
can be found elsewhere [14]. Here we summarize some main ideas. A web page is
modeled using the following types:

type record WebPageType {
 integer statusCode,
 charstring title,
 charstring content,
 LinkListType links optional,
 FormSetType forms optional,
 TableSetType tables optional
}

Web page data is typically displayed using HTML tables that can be modeled with the
following TTCN-3 types:

type set of charstring RowCellSetType;

type record TableRowType {
 RowCellSetType cells
}

type set of TableRowType TableRowSetType;

type record TableType {
 TableRowSetType rows
}

type set of TableType TableSetType;

316 B. Stepien and L. Peyton

Once the types are defined, we can define the parametric template for the web re-
sponse that is composed of constants such as the page title and the status and a pa-
rameter for the actual tables containing the requested data.

template WebPageType
hergeDBQueryResultsPage(TableSetType theTables) := {

 statusCode := 200,
 title := "bookstore.com query items page results",
 content := ?,
 links := {},
 forms := {},
 tables := theTables
}

Here again, we could have hard coded the values of the tables but, instead, in order to
avoid duplicate work we prefer to dynamically create it by deriving it from the result
set of the database query using a function as follows:

function transformDBResultsIntoHTMLTables(ItemsType theDBItems)
 return TableSetType {
 …
 theTableRows[0] := { cells := {"author", "title", "price" }};

 for(i:=0; i < numOfDBRows; i:=i+1) {
 if(ischosen(theDBItems[i].booksTable)) {
 aBook := theDBItems[i].booksTable;
 aRow := {
 cells := { aBook.author, aBook.title,

myFloat2str(aBook.price) }
 };
 theTableRows[i+1] := aRow;
 }
 }

 theTable := { rows := theTableRows };
 tables[0] := theTable;
 return tables
}

Finally the full test behavior is specified as follows:

testcase database2webResultsTest() runs on MTCType system SystemType {
 var DBSelectResponseType theDBSelectResponse;

 map(mtc:dbPort, system:system_dbPort);
 map(mtc:webPort, system:system_webPort);

 … // set the database in the desired state

 dbPort.send(myBooksSelectRequest);
 dbPort.receive(myBooksSelectResponse(myBooks))
 -> value theDBSelectResponse {
 var CatalogEntryResultSet theReceiveDBItems :=
 theDBSelectResponse.items;

 var TableSetType booksTables :=
 transformDBResultsIntoHTMLTables(theReceiveDBItems);

 webPort.send(queryBooksHerge);

 Integration Testing of Web Applications and Databases Using TTCN-3 317

 alt {
 [] webPort.receive(hergeDBQueryResultsPage(booksTables)) {
 setverdict(pass)
 }
 [] webPort.receive {
 setverdict(fail)
 }
 }
}

5 Conclusions and Future Work

In this paper, we have demonstrated two main advantages of a test specification ap-
proach for integration testing. First, test cases can be defined much more succinctly
using a single common language. This simplifies not only the writing of test cases,
but also the reading and understanding of these test cases. It also eliminates the need
to consult and understand test cases defined and written in several different languages.
Secondly, and perhaps more importantly it enables intermediate results that are com-
municated using different data formats and protocols, to be integrated, combined,
compared and verified within a single, consistent data abstract layer.

We have also demonstrated the suitability of TTCN-3 both as a test specification
language and as a framework for executing integration tests. It supports the definition
of an abstract specification layer separate from test adaptors which manage imple-
mentation specifics. TTCN-3 templates that are used to specify test oracles are created
dynamically based on defined abstract transformations between web requests and the
virtual data layer. The virtual data layer is mapped to different database tables or
views by a universal data codec.

While we have focused on integration testing in this paper, the approach can also
be used for blackbox and white box testing related to databases and session state.
Black box testing using parallel testing is proposed in [16]. In particular, they recom-
mend to avoid the traditional approach of resetting the state of a database before each
test as is often recommended [9] because this is a time consuming process and also
because it does not reflect the realities of a multi-user application in general. In
TTCN-3, we have already shown the benefits of multi-user application testing in [17]
and believe the extension of these principles to databases should be straightforward.

Whitebox testing as described in [18] can also be implemented in a straight for-
ward fashion at an abstract level using TTCN-3. They state that the full behavior of a
database application program is described in terms of the manipulation of two very
different kinds of state: the program state and the database state. While, so far, we
have used a message oriented approach in our abstract test suites, TTCN-3 provides
also a procedure oriented approach. It can be used to invoke functions or methods of
the application under test directly and, thus, check the resulting state of both the soft-
ware and the database.

Acknowledgements

The authors would like to thank Testing Technologies IST GmbH for providing us the
necessary tool -- TTworkbench -- to carry out this research as well as NSERC for
partially funding this work.

318 B. Stepien and L. Peyton

References

1. ETSI ES 201 873-1, The Testing and Test Control Notation version 3, Part1: TTCN-3
Core notation, V3.4.1 (September 2008)

2. Probert, R.L., Xiong, P., Stepien, B.: Life-cycle E-Commerce Testing with OO-TTCN-3.
In: FORTE 2004 Workshops proceedings (September 2004)

3. Rankin, C.: The Software Testing Automation framework. IBM Systems Journal, Software
Testing and Verification 41(1) (2002)

4. Bertolino, A., Frantzen, L., Polini, A., Tretmans, J.: Audition of web services for testing
conformance to open specified protocols. In: Reussner, R., Stafford, J.A., Szyperski, C.
(eds.) Architecting Systems with Trustworthy Components. LNCS, vol. 3938, pp. 1–25.
Springer, Heidelberg (2006)

5. Stepien, B., Schieferdecker, I.: Automated Testing of XML/SOAP based Web Services. In:
Proc. of the 13th. Fachkonferenz der Gesellschaft fur Informatik (GI) Fachgruppe KiVS
(February 2003)

6. Craggs, I., Sardis, M., Heuillard, T.: AGEDIS Case Studies: Model-based Testing in In-
dustry. In: Proc. 1st European Conf. on Model Driven Softw. Eng., Nuremberg, Germany,
imbus AG, December 2003, pp. 106–117 (2003)

7. Amyot, D., Roy, J.-F., Weiss, M.: UCM-Driven Testing of Web Applications. In: SDL Fo-
rum (2005)

8. Tan, R.P., Edwards, S.H.: Experiences Evaluating the Effectiveness of JML-JUnit Testing.
ACM SIGSOFT Software Engineering Notes 29(5) (September 2004)

9. Zoio, P.: Testing 1,2,3.... Oracle Magazine (July-August, 2005),
 http://www.oracle.com/technology/oramag/
 oracle/05- jul/o45testing.html

10. ETSI ES 201 873-5 V3.3.1, The Testing and Test Control Notation version 3; Part 5:
TTCN-3 Runtime Interface (TRI) (April 2008)

11. JDBC, http://java.sun.com/docs/books/tutorial/jdbc/index.html
12. Stepien, B.: A generic TTCN-3 codec framework for testing Database applications, Work-

ing Paper, School of Information Technology and Engineering, University of Ottawa
(2008)

13. Deng, Y., Frankl, P., Wang, J.: Testing Web Database Applications. ACM SIGSOFT Soft-
ware Engineering Notes 29(5), 1–10 (2004)

14. Stepien, B., Peyton, L., Xiong, P.: Framework Testing of Web Applications using TTCN-
3. International Journal on Software Tools for Technology Transfer 10(4), 371–381 (2008)

15. Chan, M.Y., Cheung, S.C.: Testing Database Applications with SQL Semantics. In: Pro-
ceedings of 2nd International Symposium on Cooperative Database Systems for Advanced
Applications, CODAS 1999 (1999)

16. Binnig, C., Kossmann, D., Lo, E.: Testing Database Applications. In: Proceedings of the
2006 ACM SIGMOD international conference on Management of data (2006)

17. Peyton, L., Stepien, B., Seguin, P.: Integration Testing of Composite Applications. In: Pro-
ceedings of the 41st Hawaii International Conference on System Sciences, HICSS 2008
(2008) ISSN:1530-1605,

 http://csdl.computer.org/comp/proceedings/hicss/
 2008/3075/00/30750096.pdf

18. Willmor, D., Embury, S.M.: Exploring test adequacy for database systems. In: Proceedings
of the 3rd UK Software Testing Research Workshop (September 2005)

	Integration Testing of Web Applications and Databases Using TTCN-3
	Introduction
	Book Store Web Application Example
	Database Integration Testing
	Data Typing
	Specifying Test Oracles Using TTCN-3 Templates
	Performing a Test
	Separation of Concerns Between Abstract and Concrete Layer

	Integration Testing of Web and Database Applications
	Consistency Check Between Web Data Entries and Database State
	Consistency Check Between Database State and Web Queries

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

